Physics Applications
Kleis includes extensive physics libraries. This chapter showcases what’s possible.
Electromagnetism: Maxwell’s Equations
The maxwell.kleis module expresses electromagnetism in covariant (tensor) form.
The Field Tensor
The electromagnetic field tensor F_μν is antisymmetric and encodes both E and B fields:
structure FieldTensorProperties {
operation F : Nat → Nat → ℝ
// Antisymmetry: F_μν = -F_νμ
axiom F_antisymmetric : ∀ mu : Nat . ∀ nu : Nat .
F(mu, nu) = negate(F(nu, mu))
// Diagonal vanishes
axiom F_diagonal_zero : ∀ mu : Nat . F(mu, mu) = 0
}
Maxwell’s Equations
The four Maxwell equations reduce to two tensor equations:
structure MaxwellInhomogeneous {
operation F : Nat → Nat → ℝ // Field tensor
operation J : Nat → ℝ // 4-current
operation divF : Nat → ℝ // Divergence of F
element mu0 : ℝ // Permeability
// ∂_μ F^μν = μ₀ J^ν
// This encodes Gauss's law (ν=0) and Ampère's law (ν=i)
axiom maxwell_inhomogeneous : ∀ nu : Nat .
divF(nu) = times(mu0, J(nu))
}
structure MaxwellHomogeneous {
operation F : Nat → Nat → ℝ
operation cyclicF : Nat → Nat → Nat → ℝ // ∂_[λ F_μν]
// ∂_λ F_μν + ∂_μ F_νλ + ∂_ν F_λμ = 0
// This encodes no magnetic monopoles and Faraday's law
axiom maxwell_homogeneous : ∀ lam : Nat . ∀ mu : Nat . ∀ nu : Nat .
cyclicF(lam, mu, nu) = 0
}
Einstein-Maxwell
Electromagnetism in curved spacetime (charged black holes):
structure EinsteinMaxwell {
operation g : Nat → Nat → ℝ // Metric
operation G : Nat → Nat → ℝ // Einstein tensor
operation F : Nat → Nat → ℝ // EM field tensor
operation T_EM : Nat → Nat → ℝ // EM stress-energy
element Lambda : ℝ // Cosmological constant
element kappa : ℝ // 8πG/c⁴
// Einstein-Maxwell field equations:
// G_μν + Λg_μν = κ T^EM_μν
axiom einstein_maxwell_field_eqn : ∀ mu : Nat . ∀ nu : Nat .
plus(G(mu, nu), times(Lambda, g(mu, nu))) = times(kappa, T_EM(mu, nu))
}
Fluid Dynamics: Navier-Stokes
The fluid_dynamics.kleis module covers incompressible and compressible flow.
Continuity Equation
Mass conservation:
structure ContinuityEquation {
element drho_dt : ℝ // ∂ρ/∂t
element div_rho_u : ℝ // ∇·(ρv)
// ∂ρ/∂t + ∇·(ρv) = 0
axiom continuity : plus(drho_dt, div_rho_u) = 0
}
Momentum Equation
The full Navier-Stokes momentum equation:
structure MomentumEquation {
element rho : ℝ
operation du_dt : Nat → ℝ
operation div_momentum : Nat → ℝ
operation grad_p : Nat → ℝ
operation div_tau : Nat → ℝ
operation f : Nat → ℝ
// Navier-Stokes momentum equation
axiom momentum : ∀ i : Nat .
plus(times(rho, du_dt(i)), div_momentum(i)) =
plus(plus(negate(grad_p(i)), div_tau(i)), times(rho, f(i)))
}
Special Cases
Incompressible flow (∇·v = 0):
structure IncompressibleFlow {
element div_u : ℝ
axiom incompressible : div_u = 0
}
Stokes flow (creeping flow, Re << 1):
structure StokesFlow {
operation grad_p : Nat → ℝ
operation laplacian_u : Nat → ℝ
element mu : ℝ
// ∇p = μ∇²v (inertia negligible)
axiom stokes : ∀ i : Nat .
grad_p(i) = times(mu, laplacian_u(i))
}
Euler equations (inviscid, μ = 0):
structure EulerEquations {
element rho : ℝ
operation du_dt : Nat → ℝ
operation convective : Nat → ℝ
operation grad_p : Nat → ℝ
// ρ∂v/∂t + ρ(v·∇)v = -∇p
axiom euler : ∀ i : Nat .
plus(times(rho, du_dt(i)), times(rho, convective(i))) = negate(grad_p(i))
}
Bernoulli’s Equation
For steady, inviscid, incompressible flow along a streamline:
structure BernoulliEquation {
element rho : ℝ
element g : ℝ
element p1 : ℝ
element p2 : ℝ
element v1 : ℝ
element v2 : ℝ
element h1 : ℝ
element h2 : ℝ
// p + ½ρv² + ρgh = constant
// Scaled: 2p + ρv² + 2ρgh = constant
axiom bernoulli_conservation :
plus(plus(times(2, p1), times(rho, times(v1, v1))),
times(times(2, rho), times(g, h1))) =
plus(plus(times(2, p2), times(rho, times(v2, v2))),
times(times(2, rho), times(g, h2)))
}
Solid Mechanics
The solid_mechanics.kleis module covers stress, strain, and failure criteria.
Stress and Strain Tensors
structure StressTensorSymmetry {
operation sigma : Nat → Nat → ℝ
// σ_ij = σ_ji (angular momentum balance)
axiom stress_symmetric : ∀ i : Nat . ∀ j : Nat .
sigma(i, j) = sigma(j, i)
}
structure ElasticityTensorSymmetries {
// Fourth-order elasticity tensor: σ_ij = C_ijkl ε_kl
operation C : Nat → Nat → Nat → Nat → ℝ
// Major symmetry (strain energy)
axiom C_major_symmetry : ∀ i j k l : Nat .
C(i, j, k, l) = C(k, l, i, j)
// Minor symmetries (stress/strain symmetry)
axiom C_minor_symmetry_1 : ∀ i j k l : Nat .
C(i, j, k, l) = C(j, i, k, l)
}
Yield Criteria
Von Mises (ductile metals):
structure VonMisesYieldCriterion {
element sigma1 : ℝ
element sigma2 : ℝ
element sigma3 : ℝ
element vm_sq_2 : ℝ
// 2σ_vm² = (σ₁-σ₂)² + (σ₂-σ₃)² + (σ₃-σ₁)²
axiom von_mises_def : vm_sq_2 = plus(plus(
times(minus(sigma1, sigma2), minus(sigma1, sigma2)),
times(minus(sigma2, sigma3), minus(sigma2, sigma3))),
times(minus(sigma3, sigma1), minus(sigma3, sigma1)))
}
Mohr-Coulomb (soils and rocks):
structure MohrCoulombCriterion {
element sigma_n : ℝ // Normal stress
element c : ℝ // Cohesion
element phi : ℝ // tan(friction angle)
element tau_critical : ℝ
// |τ| = c + σ_n tan(φ)
axiom mohr_coulomb : tau_critical = plus(c, times(sigma_n, phi))
}
Quantum Mechanics
The quantum.kleis module provides Hilbert space formalism.
State Vectors
structure Ket(dim: Nat, T) {
operation normalize : Ket(dim, T) → Ket(dim, T)
operation scale : T → Ket(dim, T) → Ket(dim, T)
}
structure Bra(dim: Nat, T) {
operation conjugate : Ket(dim, T) → Bra(dim, T)
}
Inner Product
structure InnerProduct(dim: Nat) {
operation inner : Bra(dim, ℂ) → Ket(dim, ℂ) → ℂ
// ⟨φ|ψ⟩ is the probability amplitude
// |⟨φ|ψ⟩|² is the probability
}
Operators
structure Operator(dim: Nat, T) {
operation apply : Operator(dim, T) → Ket(dim, T) → Ket(dim, T)
operation adjoint : Operator(dim, T) → Operator(dim, T)
operation compose : Operator(dim, T) → Operator(dim, T) → Operator(dim, T)
}
structure Commutator(dim: Nat, T) {
operation commutator : Operator(dim, T) → Operator(dim, T) → Operator(dim, T)
// [Â, B̂] = ÂB̂ - B̂Â
// [x̂, p̂] = iℏ (Heisenberg uncertainty!)
}
Pauli Matrices
structure PauliMatrices(T) {
operation sigma_x : Operator(2, ℂ) // |0⟩⟨1| + |1⟩⟨0|
operation sigma_y : Operator(2, ℂ) // -i|0⟩⟨1| + i|1⟩⟨0|
operation sigma_z : Operator(2, ℂ) // |0⟩⟨0| - |1⟩⟨1|
// σ_x² = σ_y² = σ_z² = I
// [σ_x, σ_y] = 2iσ_z
}
Time Evolution
structure TimeEvolution(dim: Nat) {
// |ψ(t)⟩ = e^(-iĤt/ℏ) |ψ(0)⟩
operation evolve : Operator(dim, ℂ) → ℝ → Ket(dim, ℂ) → Ket(dim, ℂ)
operation propagator : Operator(dim, ℂ) → ℝ → Operator(dim, ℂ)
}
Cosmology
The cosmology.kleis module defines standard spacetimes.
Minkowski (Flat Space)
structure MinkowskiSpacetime {
operation g : Nat → Nat → ℝ
// All curvature vanishes
axiom minkowski_ricci_vanish : ∀ mu nu : Nat . Ric(mu, nu) = 0
axiom minkowski_einstein_vanish : ∀ mu nu : Nat . G(mu, nu) = 0
}
de Sitter (Accelerating Universe)
structure DeSitterSpacetime {
operation g : Nat → Nat → ℝ
operation G : Nat → Nat → ℝ
element Lambda : ℝ
axiom positive_lambda : Lambda = 1 // Λ > 0
// Vacuum: G_μν = -Λg_μν
axiom desitter_einstein : ∀ mu nu : Nat .
G(mu, nu) = negate(times(Lambda, g(mu, nu)))
}
Schwarzschild (Black Hole)
structure SchwarzschildSpacetime {
operation g : Nat → Nat → ℝ
operation G : Nat → Nat → ℝ
element M : ℝ // Black hole mass
// Vacuum with Λ=0
axiom schwarzschild_vacuum : ∀ mu nu : Nat . G(mu, nu) = 0
}
See the Cartan Geometry appendix for computing the actual Schwarzschild curvature tensor.
FLRW (Cosmology)
structure FLRWCosmology {
operation g : Nat → Nat → ℝ
operation T : Nat → Nat → ℝ // Stress-energy (perfect fluid)
element Lambda : ℝ // Cosmological constant
element rho : ℝ // Energy density
element p : ℝ // Pressure
// Perfect fluid: T_00 = ρ
axiom perfect_fluid_energy : T(0, 0) = rho
// Einstein field equations
axiom field_equations : ∀ mu nu : Nat .
plus(G(mu, nu), times(Lambda, g(mu, nu))) = times(kappa, T(mu, nu))
}
Differential Forms
The differential_forms.kleis module provides Cartan calculus:
// Wedge product: α ∧ β
structure WedgeProduct(p: Nat, q: Nat, dim: Nat) {
operation wedge : DifferentialForm(p, dim) → DifferentialForm(q, dim)
→ DifferentialForm(p + q, dim)
axiom graded_antisymmetric : ∀ α β .
wedge(α, β) = scale(power(-1, p*q), wedge(β, α))
}
// Exterior derivative: dα
structure ExteriorDerivative(p: Nat, dim: Nat) {
operation d : DifferentialForm(p, dim) → DifferentialForm(p + 1, dim)
axiom d_squared_zero : ∀ α . d(d(α)) = 0 // d² = 0
}
// Hodge star: ⋆α
structure HodgeStar(p: Nat, dim: Nat) {
operation star : DifferentialForm(p, dim) → DifferentialForm(dim - p, dim)
axiom hodge_involutive : ∀ α .
star(star(α)) = scale(power(-1, p*(dim-p)), α)
}
Cartan’s Magic Formula
The Lie derivative ℒ_X connects all operations:
// ℒ_X = d ∘ ι_X + ι_X ∘ d
define cartan_magic_impl(X, alpha) =
plus(d(interior(X, alpha)), interior(X, d(alpha)))
What’s Next
Apply these physics structures with numerical methods: